Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
g1(s1(x)) -> f1(x)
f1(0) -> s1(0)
f1(s1(x)) -> s1(s1(g1(x)))
g1(0) -> 0
Q is empty.
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
g1(s1(x)) -> f1(x)
f1(0) -> s1(0)
f1(s1(x)) -> s1(s1(g1(x)))
g1(0) -> 0
Q is empty.
Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:
G1(s1(x)) -> F1(x)
F1(s1(x)) -> G1(x)
The TRS R consists of the following rules:
g1(s1(x)) -> f1(x)
f1(0) -> s1(0)
f1(s1(x)) -> s1(s1(g1(x)))
g1(0) -> 0
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
G1(s1(x)) -> F1(x)
F1(s1(x)) -> G1(x)
The TRS R consists of the following rules:
g1(s1(x)) -> f1(x)
f1(0) -> s1(0)
f1(s1(x)) -> s1(s1(g1(x)))
g1(0) -> 0
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].
The following pairs can be oriented strictly and are deleted.
F1(s1(x)) -> G1(x)
The remaining pairs can at least be oriented weakly.
G1(s1(x)) -> F1(x)
Used ordering: Polynomial Order [17,21] with Interpretation:
POL( F1(x1) ) = 2x1 + 2
POL( s1(x1) ) = 2x1 + 2
POL( G1(x1) ) = max{0, 2x1 - 2}
The following usable rules [14] were oriented:
none
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
G1(s1(x)) -> F1(x)
The TRS R consists of the following rules:
g1(s1(x)) -> f1(x)
f1(0) -> s1(0)
f1(s1(x)) -> s1(s1(g1(x)))
g1(0) -> 0
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 0 SCCs with 1 less node.